

Banha University Faculty of Engineering Mechanical Engineering Department

### ENGINEERING PHYSICAL METALLURGY

#### Prof. Dr. Eng. Fouad Helmy Mahmoud Dr. Mahmoud Khedr

### LECTURES

Lecturer: Dr. Mahmoud Khedr Mail: Mahmoud.Khedr@feng.bu.edu.eg Office hour: Wednesday 10 - 12 pm

Class Meet

Location: Office:3 <sup>rd</sup> floor

Activities:

- Present new material
- Announce reading and homework
- Take midterms



### **Examinations & Evaluations**

| Final Exam                  | <b>60%</b> |
|-----------------------------|------------|
| Midterm Examination         | 20%        |
| Oral Examination            | 10%        |
| Tutorials, reports, absence | 10%        |



Dr. Mahmoud Khedr

### **COURSE MATERIALS**

**Required text:** 

- Materials Science and Engineering: An Introduction
  W.D. Callister, Jr., any edition.
- The Science and Engineering of Materials -Askeland

#### **Complementary Material:**

- Clear Mind (think logically or whatever makes sense to you.)
- Curiosity (why ???)

#### My requirements

- Read your textbook
- Do homework yourself





#### **COURSE CONTENTS**

- 1. Crystal Geometry.
- 2. Binary Solutions
- 3. Phase Diagrams
- 4. Iron-Carbon System
- **5. Single Crystal Deformation**
- 6. The Strengthening of Metals
- 7. Heat Treatment Fundamentals
- 8. Diffusion
- 9. Non-Ferrous Alloys

2 Lectures

1 Lecture

- 1 Lecture
- 1 Lecture
- 1 Lecture
- 1 Lecture
- 2 Lectures
- 1 Lecture
- 1 Lecture



| Week<br>No. | Theory                                      | practice                                                 | Remarks                                                               |
|-------------|---------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|
| 1           | Introduction to<br>engineering<br>materials | Introduction                                             | 1. Assignments will be<br>given at the end of each<br>chapter(Theory) |
| 2           | Crystal structure                           | Assignment                                               | 2. Summing suittee will be                                            |
| 3           | Binary solution                             | Assignment                                               | distributed uniformly in 16                                           |
| 4           | Phase diagrams                              | Assignment                                               | weeks (min 3)                                                         |
| 5           | Phase diagrams                              | Assignment                                               |                                                                       |
| 6           | Iron-carbon<br>phase diagram                | Assignment                                               |                                                                       |
| 7           | Iron-carbon<br>phase diagram                | Assignment                                               |                                                                       |
| 8           | MID THEORY<br>EXAM                          | Determination of<br>% of Carbon                          |                                                                       |
| 9           | Single crystal<br>deformation               | Annealing                                                |                                                                       |
| 10          | Strengthening of<br>materials               | Normalizing<br>Processes                                 |                                                                       |
| 11          | Heat treatment fundamentals                 | Hardening &<br>Tempering<br>Processes                    |                                                                       |
| 12          | Heat treatment fundamentals                 | Mechanical<br>Properties of Heat<br>Treated<br>Specimens |                                                                       |
| 13          | Diffusion                                   | Case hardening                                           |                                                                       |
| 14          | Ferrous alloys<br>non                       | Review                                                   |                                                                       |
| 15          | Review                                      | Oral exam                                                |                                                                       |
| 16          | FINAL THE                                   | ORY EXAM                                                 |                                                                       |

#### Dr. Mahmoud Khedr





### Chapter 1

#### Introduction to Materials Science and Engineering



Dr. Mahmoud Khedr



Chapter 1 ·

### **Chapter Learning Objectives**

- Understand primary concepts which define Materials Science and Engineering (MSE).
- Understand the role of materials science in the design process.
- Classify materials by properties.
- Classify materials by function.



### **Prefixes for Fractions and Multiples**

| <b>10</b> -1             | deci  | d | 10                      | deka  | da |
|--------------------------|-------|---|-------------------------|-------|----|
| <b>10</b> <sup>-2</sup>  | centi | С | <b>10</b> <sup>2</sup>  | hecto | h  |
| <b>10</b> -3             | milli | m | <b>10</b> <sup>3</sup>  | kilo  | k  |
| <b>10</b> <sup>-6</sup>  | micro | μ | <b>10</b> <sup>6</sup>  | mega  | М  |
| <b>10</b> -9             | nano  | n | 10 <sup>9</sup>         | giga  | G  |
| <b>10</b> <sup>-12</sup> | pico  | р | <b>10</b> <sup>12</sup> | tera  | T  |
| <b>10</b> <sup>-15</sup> | femto | f | <b>10</b> <sup>15</sup> | peta  | Ρ  |

#### 



Chapter 1

Dr. Mahmoud Khedr

### **Chapter 1 - Introduction**

- Materials drive our society regardless what age
  - Stone Age
  - Bronze Age
  - Iron Age
  - Now?
    - Silicon? Nanotech? Energy?



**Engineering Physical Metallurgy** 

Introduction

### Introduction

# CLASSIFICATIONS OF COMMON ENGINEERING MATERIALS



Dr. Mahmoud Khedr

Chapter 1 -

#### **Engineering Materials**





### **Further Classification**

- Metals
  - Ferrous
  - Non-ferrous
  - Super alloys
- Ceramics
  - Traditional ceramics
  - New ceramics
  - Glass



### **Further Classification**

- Polymers
  - Thermoplastics
  - Thermosets
  - Elastomers
- Composite Materials
  - Metal Matrix Composites
  - Ceramic Matrix Composites
  - Polymer Matrix Composites



### **Metals**

- Ferrous Metals
  - Cast irons
  - Steels
- Non-ferrous metals
  - Aluminum and its alloys
  - Copper and its alloys
  - Magnesium and its alloys
  - Nickel and its alloys
  - Titanium and its alloys



### Metals

- Ferrous Metals
  - Cast irons
  - Steels
- Superalloys
  - Iron-based
  - Nickel-based
  - Cobalt-based

- Non-ferrous metals
  - Aluminum and its alloys
  - Copper and its alloys
  - Magnesium and its alloys
  - Nickel and its alloys
  - Titanium and its alloys
  - Zinc and its alloys
  - Lead & Tin
  - Refractory metals
  - Precious metals



#### **ENGINEERING MATERIALS**

#### •Basic Materials Groups: Metals – Polymers or Plastics – Ceramics

#### •Other Important Materials Groups Composites – Electronic Materials – Biomaterials



Dr. Mahmoud Khedr

# (1) Metals

- A metal is an inorganic substance which composed of one or more metallic elements and may also contain some nonmetallic elements (non-metallic inclusions).
- Metals also have a crystalline structure in which the atoms are arranged in orderly manner.
- Metals in general are good thermal and electrical conductors.
- Many metal are relatively strong and ductile at room temperature, and many maintain good strength even at high temperatures.
- Examples of metallic elements: Iron (Fe), Copper (Cu), and Aluminium (AI).



### (1) Metals Cont.

- Metals and alloys are commonly divided into two classes:
- 1. Ferrous metals and alloys; contain a large percentage of iron. Examples: Steels and Cast irons.
- 2. Non-ferrous metals and alloys; do not contain iron or only a relatively small amount of iron. Examples: Aluminium, Copper, Zinc, and Nickel.



Metallic materials (stainless steel utensils for commercial kitchens). Metals posses ductility for the required processing.



# (2) Polymers and Plastics

- They are materials containing of long molecular chains or network of low-weight elements such as carbon, hydrogen, and nitrogen.
- Most polymeric materials are non-crystalline but some consist of mixtures of crystalline and non-crystalline regions.
- Most polymeric materials are poor conductors of electricity. Some of these materials are good insulators and are used for electrical insulation applications.
- In general, they have **low densities** and relatively low softening or decomposition temperatures.



### (3) Ceramic Materials

- They are inorganic materials which consists of metallic and non-metallic elements chemically bonded together.
- Ceramics can be crystalline, noncrystalline, or mixtures of both.
- Most ceramics have high hardness and high-temperature strength but tend to have mechanical brittleness.
- Most ceramics have high heat and wear resistance.
- Generally ceramics are light weight.
- Examples: Furnace linings, Tiles for the space shuttle, Spark plug coating for automotive applications.



Ceramic insulator in a spark plug. The insulator is primarily Al2O3, a compound of metal and non-metallic elements



### (4) COMPOSITE MATERIALS

- Composite materials are mixtures of two or more materials.
- Usually, the components do not dissolve in each other and can be physically identified by an interface between the components.
- Examples: Fibreglass, concrete, and Wood (timber).



Automobile tire is an example of the composite materials applications



### (5) Electronic Materials

- Electronic materials are not a major type of material by volume but are an extremely important type of material for advanced engineering technology.
- The most important electronic material is **pure silicon** which is modified in various ways to change its electrical characteristics.
- Examples: Microelectronic devices have made possible such new products as communication satellites, advanced computers, hand-held calculators, digital watches, and welding robots.



Microprocessor, which is the central processing element of a microcomputer



### (6) Biomaterials

- Biomaterials are employed in components implanted into the human body for replacements of diseased or damaged body parts.
- These materials must not produce toxic substances and must be compatible with body tissues (i.e. must not cause adverse biological reactions).
- All of the above materials metals, ceramics, polymers, composites, and electronic materials- may be used also as biomaterials



Photograph showing mobile-bearing total knee.

